

Messumformer der Reihe MU

Multi-E-MU

Universal-Messumformer mit Ethernet-Schnittstelle mit HTTP: TCP/IP: Modbus-TCP Protkoll

2 Grenzwert- bzw. Impulsausgänge

Merkmale / Nutzen

- Hilfsspannungsversorgung durch integriertes AC/DC-Weitbereichsnetzteil
- Aufbaugehäuse für 35mm DIN-Hutschiene
- Messgrößen: Wechselstrom, Wechselspannung, Frequenz, Wirkleistung, Blindleistung, Scheinleistung und Leistungsfaktor
- Messeingänge: Sinusförmige Wechselgrößen in Wechsel- und Drehstromnetzen gleicher oder ungleicher Belastung mit ein- oder zweiseitiger Energierichtung
- Analogausgänge: Unipolare, live-zero und bipolare Ausgänge (konfigurierbar)

Anwendung

Der Messumformer Multi-E-MU dient zur gleichzeitigen Umformung und Trennung von Strom, Spannung, Frequenz, Wirk-, Blind-, Scheinleistung und des Leistungsfaktors bei sinusförmigen Wechselgrößen.

Die Messung ist in Wechselstromnetzen und Drei- oder Vierleiter-Drehstromnetzen mit gleicher oder beliebiger Belastung möglich. Die 29 Messgrößen können über eine 10 Mbits/s Ethernet LAN-Schnittstelle am PC angezeigt, gespeichert und konfiguriert werden. Im internen Speicher des Messumformers können bis zu 13.000 Messwertreihen gespeichert werden. Weiterhin kann man die Messergebnisse per Webbrowser anzeigen oder per HTTP-, TCP/IP- oder Modbus-TCP Protokoll auslesen und weiterverarbeiten. Zwei weitere Ausgänge können als Grenzwert- oder Impulsausgänge verwendet werden. Der Schaltzustand der Grenzwert- oder Impulsausgänge wird über 2 LED's angezeigt.

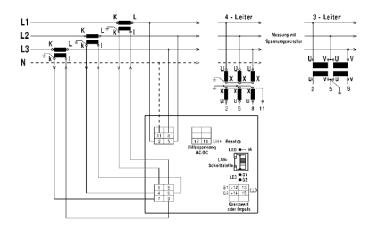
Technische Ke		sche Kennwerte
Messeingang		Übertragungsv
Nennstrom	2 A und 6 A	Genauigkeit
Strombereich	0,3 – 10 A, konfigurierbar	Genauigkeit Leis
Nennspannung	100 – 750 V	faktor (S = U x II
Spannungsbereich	40 – 750 V, konfigurierbar	
Nennfrequenz	50 Hz	Stromeinfluss
Frequenzbereich	40 – 80 Hz	Frequenzeinflus
Eigenverbrauch	0,06 VA bei 1 A;	Phasenwinkeleir
je Strompfad	0,3 VA bei 5 A	Temperaturbere
Eigenverbrauch	0,02 VA bei 100 V;	Temperatureinflu
je Spannungspfad	1 VA bei 750 V	Hilfsspannungse
Überlastbarkeit	max. 12 A, dauernd	Bürdeeinfluss
Stromeingang	240 A, 1 Sek.	Fremdfeldeinflus
Überlastbarkeit	max. 750 V, dauernd	Hilfsenergie
Spannungseingang	1000 V, 1 Sek.	Weitbereichsnet
Grenzwert- und Impuls	ausgänge	
Тур	Open Collector (NPN-Transistor)	Sicherheit
Betriebsspannung	5 – 24 V DC, max. 30 V DC	Prüfspannung
Betriebsstrom	max. 40 mA	_
Impulslänge	ca. 40 ms (Pause > 100 ms)	
Hysterese	ca. 4 % vom eingestellten Wert	_
Genauigkeit	± 1 % vom Messbereichsendwert	
ACHTUNG! Die Wertigkeit der Impulse ist mit dem Über-		Gewicht:
setzungsverhältnis (K _N)	der jeweils verwendeten Strom-	

Genauigkeit	± 1 % vom Messbereichsendwert	
ACHTUNG! Die Wertigkeit der Impulse ist mit dem Über-		
setzungsverhältnis (K _N) der jeweils verwendeten Strom-		
und Spannungswandler zu teilen!		

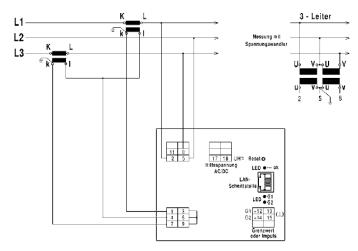
Übertragungsverhalten		
Genauigkeit	± 0.5 %	
Genauigkeit Leistungs-	± 0,5 % bei S > 25 %;	
faktor (S = U x IN x $\sqrt{3}$)	± 1 % bei S < 25 %; bei S < 10 % erfolgt	
,	keine Messung des Leistungsfaktors	
Stromeinfluss	< 0,5 % bei 0,15 bis 2-fachen Nennstrom	
Frequenzeinfluss	< 0,3 % im Frequenzbereich	
Phasenwinkeleinfluss	< 0,5 % bei ± 90°	
Temperaturbereich	-15°C bis <u>+20°C bis +30°C</u> bis +55°C	
Temperatureinfluss	< 0,2 % bei 10 K	
Hilfsspannungseinfluss	nein	
Bürdeeinfluss	nein	
Fremdfeldeinfluss	nein (bis 400 A/m)	
Hilfsenergie		
Weitbereichsnetzteile	10 - 30 V AC+DC, 5 VA oder	
	60 – 265 V AC+DC, 5 VA	
Sicherheit		
Prüfspannung	5,2 kV zwischen Eingang zu Hilfs-	
	spannung	
	5,2 kV zwischen Eingang zu Schnittstelle	
	2 kV zwischen Grenzwert- bzw. Impuls-	
	ausgang zu Schnittstelle	
Gewicht:	500 g	

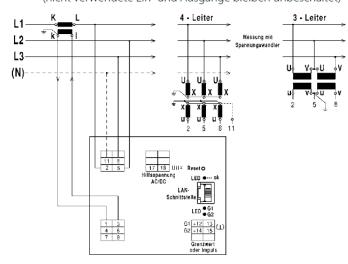
Kalibrierung

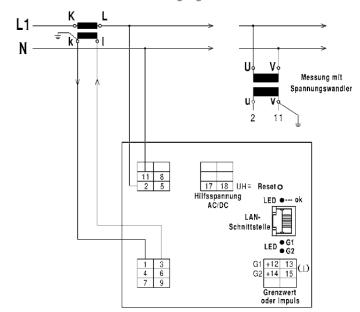
Der Messumformer ist werkseitig kalibriert. Eine Neukalibrierung sollte alle 2 Jahre im Herstellerwerk erfolgen.

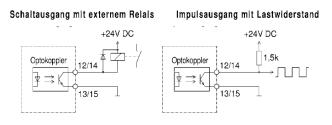

Konfigurierung

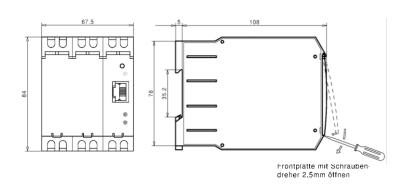
Der Messumformer wird werkseitig konfiguriert wenn die erforderlichen Daten bekannt sind. Eine Neukonfigurierung ist jederzeit möglich. Erforderlich sind dafür nur die entsprechende Software (Zubehör) und ein PC. Der Messumformer und der PC sind mittels eines LAN-Kabels (Zubehör) zu verbinden. Die Hilfsspannung ist am Messumformer anzuschließen. Die verschiedenen Konfiguriermöglichkeiten der Ein- und Ausgänge sind programmgeführt. Die Software (Zubehör) zur Konfigurierung wird auf einer CD geliefert.


Messumformer der Reihe MU


3-/ 4- Leiter-Drehstrom, beliebiger Belastung (nicht verwendete Ein- und Ausgänge bleiben unbeschaltet)


3- Leiter-Drehstrom, beliebiger Belastung (nicht verwendete Ein- und Ausgänge bleiben unbeschaltet)


3-/4- Leiter-Drehstrom, gleicher Belastung (nicht verwendete Ein- und Ausgänge bleiben unbeschaltet)



Wechselstrom (nicht verwendete Ein- und Ausgänge bleiben unbeschaltet)

Grenzwert- oder Impulsausgang G1 und G2

